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Noise from Fine-Scale Turbulence of Nonaxisymmetric Jets

Christopher K. W. Tam* and Nikolai N. Pastouchenko’
Florida State University, Tallahassee, Florida 32306-4510

The noise from the fine-scale turbulence of high-speed nonaxisymmetric jets is considered. A prediction method
is developed by extending the work of Tam and Auriault (Tam, C. K. W., and Auriault, L., “Jet Mixing Noise from
Fine-Scale Turbulence,” AIAA Journal, Vol. 37, No. 2, 1999, pp. 145-153). A set of improved numerical boundary
conditions for use in nonaxisymmetricjet mean flow and turbulence calculation is developed. These new boundary
conditions allow the computation to be carried out in a smaller computation domain. It is known that nonaxisym-
metric mean flow has a significant impact on the radiated noise spectrum and directivity through refraction. In the
Tam and Auriault theory, this effect is accounted for by means of the adjoint Green’s function. Here the adjoint
Green’s function method is extended to nonaxisymmetric mean flows. The adjoint Green’s function is first recast
into the solution of a sound scattering problem. The sound scattering problem is then solved computationally by
computational aeroacoustics methods. Extensive comparisons between calculated and experimentally measured
jet noise spectra are presented. They include both rectangular and elliptic jets at supersonic and subsonic Mach
numbers. Good agreements are found even for jets with very large aspect ratio.

Nomenclature

¢, = specific heat at constant volume
D, = jet diameter (fully expandedif jet is supersonic)
fio = frequency and angular frequency
k = turbulence kinetic energy
Pr = Prandtl number
p = pressure
(R,®,¢) = sphericalpolarcoordinates
r,¢,x) = cylindrical coordinates
T = temperature
u; = jet velocity (fully expandedif jet is supersonic)
(u,v,w) = velocity components
(Uy, Vg, = adjoint variables
Wa, Pa)
(U, Poos = ambient conditions
Poos Teo)
(x,y,z,t) = Cartesiancoordinates and time
(o, B,2) = wavenumberin x and y directions

and angular frequency
y = ratio of specific heat
e = dissipationrate of the k—& turbulence model
K = wave number of waves in perfectly matched layer
v = molecular viscosity
v, = turbulent viscosity
o = density
o = damping constant

I. Introduction

SEARCH through the literature reveals that there is no reli-

able nonaxisymmetricjet noise predictiontheory at the present

time. The objective of this investigationis to extend the recently de-

veloped semi-empirical jet noise theory of Tam and Auriault' to

nonaxisymmetric jets. In the original work, only axisymmetric jets
were considered.

The Tam and Auriault theory' calculates only the noise from the

fine-scale turbulence of a jet. The theory first separates out the fine-
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scale turbulence from the flow and acoustics by spatial filtering. The
spatially filtered governingequationshave essentiallythe same form
as the Reynolds-averaged Navier-Stokes equations (RANS). Tam
and Auriault suggested' that the dominant part of fine-scale turbu-
lence mixing noise is generated by the unsteady turbulence kinetic
energy. Refraction of sound by the flow and density gradients of the
jetis included in the theory through the use of the adjoint Green’s
function. Information concerning the fine-scale turbulence is sup-
plied by the semi-empirical k—¢ turbulence model. Aside from the
inherent empirical constants of the k-¢ model, the theory contains
three empirical constants of its own. Two of these constantsare used
to establish the length scales and timescales of the fine-scale turbu-
lence. The turbulence kinetic energy computed by the k-¢ model
includesboththe large- and fine-scale turbulence of the jet. The third
constant effectively assigns the proper fraction of the turbulence ki-
netic energy k to the fine-scale turbulence. The three constants were
found by best fit to the jet noise data of the Jet Noise Laboratory of
NASA Langley Research Center.>* Tam and Auriault' applied their
theory to the prediction of cold jet noise spectra over a wide range
of Mach numbers from 0.3 to 2.0. Note that the sound pressure level
(SPL) of aMach 2.0 jet is about 60 dB higher than that of a Mach 0.3
jet. Thus, the experimental data cover a very large range of SPLs.
The predicted spectra agreed well with experimental measurements.
Tam and Auriault also compared the calculated noise spectra with
hot supersonic jet noise data at Mach 1.5 and 2.0. Good agreements
were again found. The temperature ratio of the data varied from 1.0
to 4.9. This temperature range brackets the operating conditions of
all modern day commercial jet engines.

Most recently, Tam et al.* used the theory to calculate the noise
from jets in simulated forward flight. Experimentally, it is known
that for each 0.2 increase in forward flight Mach number, there is
a reduction of sideline noise of 4-4.5 dB. This is a large change in
jetnoise level. Tam et al. compared the calculated noise spectra for
a Mach 1.5 jet at simulated forward flight Mach number 0.0, 0.2,
and 0.4 with the measurements of Norum and Brown.’ Excellent
agreements were found. They* also compared the calculated noise
spectra for subsonic jets in forward flight with the data of Ref. 6.
Again good agreements were found.

To calculate the noise from nonaxisymmetric jets, two crucial
requirements must be met. First, one must compute the mean flow
and the turbulence quantities needed for the noise source model.
Second, a method to calculate the flow refraction effects over the
entire frequency spectrum of jet noise has to be developed.

The Tam and Auriault theory! relies on the k-& turbulence model
for input on jet mean flow, noise source intensity and the character-
istic length scales and timescales of the turbulence. The constants
of the k-& model are, however, not those of the standard model.
Tam and Auriault chose to adopt the values suggested by Thies and
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Tam.” Thies and Tam observed that the large turbulence structures
of a flow, having dimensions comparable to the mean flow, would
likely be affected by the flow geometry and boundary conditions.
Their dynamics and characteristics are, therefore, flow specific. In
other words, the large-scale turbulence is not universal. The con-
stants of the standard model were calibrated by data from low-speed
boundary-layerand two-dimensional mixing layers. Thus, they are
not necessarily suitable for high-speed jets. Indeed, past attempts
to use the standard model to predict jet mean flow profiles did not
give satisfactory results. Thies and Tam then suggested that if one
restricted one’s consideration to a specific class of flows with simi-
lar characteristics, such as jet flow alone, it would be reasonable to
expect a single set of constants to work for all of the flows within
the class. They recalibrated the constants for jet flows using a large
database. Here we will use the values of the constants they recom-
mend.

To calculate the mean flow, Thies and Tam’ solved the parabolized
RANS equations supplemented by the k-¢ model. They employed
the highly accurate dispersion-relation-reserving (DRP) scheme®
for numerical solution. In this work, the mean flows of nonaxisym-
metric jets are calculated essentially by the same procedure except
that an improved set of boundary conditions is imposed. The new
boundary conditions are developed to allow the computation to be
carried out in a smaller computation domain. The formulation of
the new boundary conditionsis described in Sec. II.

The nonaxisymmetric mean flow of a jet, undoubtedly, has a sig-
nificant impact on the noise directivity through refraction alone.
Because low-frequency sound having long acoustic wavelength is
less affected by refraction than high-frequency sound, the nonax-
isymmetric mean flow will modify the noise spectrum in the far
field. In the past, there have been many investigations on how best
to quantify mean flow effects. Most of the approachesused asymp-
totic analysis based either on the low-frequency limit, for example,
Goldstein,”'? or the high-frequencylimit, for example, Balsa'' and
Goldstein.”” Durbin'®'* and Khavaran and Krejsa'>"'® considered
the zero wavelength limit of geometric acoustics and ray tracing.
However, jet noise is broadband, extending over a frequency range
of almostthree decades. It is difficult to justify the use of asymptotic
results over such a broad frequency range. Typically, the Strouhal
number, fD; /u;, at the peak of the noise spectrumis approximately
equal to 0.3. For commercial jet engines, u; is roughly equal to the
speed of sound. Thus, the acoustic wavelengthis as long as three jet
diameters. This is definitely not in the high-frequency limit. More-
over, Khavaran'’ stated that the use of ray tracing was too compu-
tationally intensive to be practical.

In this paper, the flow effect is included in the theory through
an extension of the adjoint Green’s function approach of Tam and
Auriault.'® In Sec. II1, it will be shown how the adjointGreen’s func-
tion problem can be recast into a two-dimensional sound scattering
problem. The sound scattering problem is then solved computation-
ally in the time domain by the DRP scheme.® A perfectly matched
layer (PML) boundary condition is enforced around the finite com-
putation domain. The PML absorbs the scattered sound waves, thus
preventingtheir reflection back into the computationdomain. In this
way, possible contamination of the numerical solution is avoided.

In Sec. IV, comparisons between computed noise spectra and
experimental measurements are presented. Both rectangularand el-
liptic jets at supersonic and subsonic Mach numbers are included
in the comparisons. Good agreements are found in all of the cases.
The nonaxisymmetric features of the far-field noise spectra from
large aspect ratio rectangular jets are correctly reproduced by the
theory.

II. Mean Flow and Turbulence Computation

In this investigation,the mean flow and turbulencekinetic energy
of nonaxisymmetric jets are calculated by the procedure used by
Thies and Tam.” Thies and Tam employed the k-¢ turbulencemodel
but with a set of modified constants. They solved the parabolized
RANS equations by means of the DRP scheme.® The solution starts
at the nozzle exit plane and marches downstream. It is well known
that the parabolized RANS equations are numerically unstable in
regions without a mean flow. To stabilize the numerical solution,

a small forward flight velocity, 2% or less of the jet exit velocity,
is added outside the static jet. The computation is carried out in a
finite domain in the y—z plane at each x station, where x is taken
to be the flow direction. Because a finite domain is used, a set of
boundary conditions must be imposed at the external boundaries.
In the present investigation, a new set of boundary conditions are
used. This set of boundary conditions is derived without invoking
the far-field assumption r — oo. This allows the computation to be
done in a smaller computation domain. The numerical results are
found to be in good agreement with those obtained by the original
code of Thies and Tam.” However, the computation time is reduced.
In this section, the formulation of the new boundary conditions is
presented.

The parabolized RANS equationsincluding the Pope and Sarkar
corrections (see Ref. 7) with respect to a Cartesian coordinate cen-
tered at the nozzle exit with the x axis pointing in the flow direction
are
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where all 3/dx — 0 in 7;; and 7},

(k| o ou 2+8w du 2+ v, dw') du du
X= 4\ g oy \ dy 0z \ 0z dz dy J dy 0z

The constants are

¢, = 0.0874, o, = 0.324, o, = 0.377, Pr=0.422
c = 1.4, Cer = 2.02, c.3 = 0.822
ky =107°, g = 107, a; =0.518

(The two small positive numbers &y and &, are inserted in the k-&
model to preventdivision by zero.)

Outside the jet, the flow velocity and pressure and temperature
perturbationsare small. Itis, therefore, sufficientto use the linearized
form of Eq. (1). Also, note that in this region there is no turbulence
ork=¢e=0.Let

/ /

U=us +u, v="1/, w=w

P =P+ D, T=T,+T ()

Substitution of Eq. (2) into Eq. (1) and retaining only the lowest-
order terms, the linearized equations are
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The integral of Eq. (3) is
u' =0 ®)

Equations (6) and (7) may be integrated, by making use of Eq. (8),
to yield the integral

T'= [y = D/yI(Tx/Px) P’ C))

Because of Eq. (9), the remaining unknown variables v’, w’, and p’
are governed by Egs. (4) and (5) and the following equation:
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At some distance away from the jet, the velocity and pressure
fields are expected to be small and approximately axisymmetric.
In this region, Eqs. (4), (5), and (10), when written in cylindrical
coordinates (, ¢, x), have the form
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where v; is the radial velocity. If r is large, the last term of Eq. (12)
may be neglected.In this case, Eqs. (11) and (12) become the simple
wave equation, and the solution s a function of &£ =x — (U, /as )7,

where aq, = (¥ Poo/ P )'/? is the sound speed. For r not too far from

the jet, the last term of Eq. (12) should be retained. Let us change
the independent variables of Eqgs. (11) and (12) to & and r. The
equations become
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Because u, is small, the solution may be expanded as a series in
Uy, thatis,

U =g+ Ugovy + Ui vy
p'=potunp Hulpyt+ - (15)
Itis easy to find, by substituting Eq. (15) into Egs. (13) and (14) and

after some simple integrations, the following formulas for the first
two terms of Eq. (15):
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where 0o(&) is an arbitrary function. By the differentiation of
Egs. (15) and (16) to eliminate 9,(£), it is straightforward to de-
rive the boundary conditions
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In summary, the boundary conditions for all of the flow variables,
to be imposed in the jet near field, are
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III. Mean Flow Refraction Effects

To account for mean flow refraction effect on the radiated sound,
Tam and Auriault' made use of the adjoint Green’s function. The
computation of the adjoint Green’s function for axisymmetric jets
was discussed in detail by Tam and Auriault.'® Here the method is
generalized for application to nonaxisymmetric jets.

Jets evolve slowly in the flow direction. A natural approximation
is to regard the mean flow as locally parallel. Tam and Auriault'
investigated the accuracy of the locally parallel flow approxima-
tion and concluded that the approximation would yield good results
outside the cone of silence. Because fine-scale turbulence noise is
dominant in the sideline and upstream directions that are not in the
cone of silence, the locally parallel flow approximationwill be used
throughout this work.

Uu=uy,

k=e=0

(19)

A. Adjoint Green’s Function as Solution of Scattering Problem

Let u(y,z), p(y,z), and p(y,z) be the mean flow velocity,
density, and pressure distribution of a jet. Let us consider the
time harmonic adjoint Green’s function, denoted by a subscript a.
The governing equations for the adjoint Green’s function are (see
Ref. 18)
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where x, is the far-field observation point at which jet noise is to be
measured.

Outsidethe jet, u is zero. It is straightforwardto find from Eq. (20)
that p, satisfies the equation

V2p, + (?/a2) pa = (iw/2ma2,)5(x — xo) 1)
The solution of Eq. (21) is

—iw expli(w/as)lx — xol]

Do = (22)

8r2a2, |x — xo]
where |x — x| is the distance between x and x,,.

For convenience, let the spherical coordinates of x; be (R, ©, ¢)
(Fig. 1). The polar axis of the spherical coordinate system coincides
with the x axis. © is the polar angle and ¢ is the azimuthal angle.
Here our interest is confined to the far field, namely, R — oo. For
large R, we have

lx —xo| R —x-x0/R
=R — cos Ox — sin® cos ¢y — sin O sin ¢z

By means of the preceding far-field approximation, it is easy to find,
from Eq. (22) and the correspondingformulas for the velocity com-
ponents, the solution for the adjoint Green’s function, as R — oo,
to be

U, Poolso COS O
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(23)

Now the adjoint Green’s function of Eq. (20) may be found as a
wave scattering problem by solving the homogeneous equation of
Eq. (20) with Eq. (23) as the incident wave. This task is greatly sim-
plified by noting that under the locally parallel flow approximation

/

x
jet

Fig. 1 Relationship between spherical coordinates (R, 8, ¢) and the
Cartesian coordinates.

the coefficients of Eq. (20) are independentof x. Thus, the solution
must have the same x dependence as the incident wave. That is,

U (x,y,z, w)exp(—iot) =i, (y, z,t) exp[—i(w/ax) cos Ox]
(24)

and similarly for the other variables.

When exp[—i(w/a~) cos ©x]is factoredoutand —iw is replaced
by 8/dt in Eq. (20) to make the equations time dependent, the ad-
joint Green’s function problem becomes a two-dimensional sound
scatteringproblem. The governing equations and the incident waves
are as follows:
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Outside the jet, the incident wave is
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In deriving Eq. (25), the relationship
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which is the integral of the first equation of Eq. (20), has been used.

B. Numerical Solution

For a given mean flow u(y, z), p(y, 2), and p(y, z), the sound
scattering problem of Eqgs. (25) and (26) may be solved computa-
tionally. For this purpose, Eq. (25) is discretized according to the
seven-point stencil DRP scheme®!” in a rectangular computation
domain as shown in Fig. 2. The outer boundary of the computation
domainis takento be where the mean flow u differsfromu ., by 0.1%
of u;. This choice assures that a larger computation domain is used
for x stations farther downstream from the nozzle exit. The mesh
size is set by the smaller of the following two criteria. To ensure the
DRP scheme has sufficient spatial resolution for the incident and

Z
© @[ \__\ \)\ B
incident
waves
3
Yy
_ jet flo
D
0 PML @) ®

Fig. 2 Computational domain showing the jet flow, incident sound
waves, and the PML.
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the scattered acoustic waves, no less than seven mesh spacings per
acoustic wavelength is used. That is, a finer mesh is automatically
used for high-frequency waves. To make certain that the refraction
of sound by the mixing layer of the jet is accurately computed, a
minimum of eight mesh spacingsis used per half-width of the layer.
To eliminate spurious numerical waves that may inadvertently be
generated at the boundaries of the computation domain, artificial
selective damping terms'®? are added to the discretized equations.
The artificial selective damping terms damp the short waves with-
out affecting the physical (long) waves. The inverse mesh Reynolds
number of the damping terms is given a value of 0.05. This value
has been found to yield very satisfactory results.

As shown in Fig. 2, the computation domain is surrounded by a
PML. The PML has a thickness of 15 mesh points. In this layer, the
flow variables are split into two parts (the split variable method).?!
One part of the variables will be assigned the values of the inci-
dent wave given by Eq. (26). The other part is the scattered waves.
The scattered waves are damped by the built-in damping of the
PML.22=2* The layer is called perfectly matched because, in prin-
ciple, there is no reflected wave back into the computation domain.
The construction of the PML is discussed in the Appendix.

For a given direction of radiation and frequency, the incident
wave (26) is completely specified. To start the computation, initial
conditions are required. In this work, the incident wave is used
as the starting condition. The solution is marched in time until a
time periodic state is attained. At this time, the maximum absolute
value of p, over a cycle is measured at every point in the jet. This
is the absolute value of the adjoint Green’s function | p,| needed for
noise computation.

IV. Comparisons with Experimental Measurements

Tam and Auriault! derived the following formula for the far-
field noise spectrum, S(R, ©, ¢, fD; /u;), in decibels per Strouhal
number fD; /u;:

fD») [§(R,®,¢,f)}
S| R,0©,¢,—L ) =10log| ————— (28)
( ¢ uj o Pp(Dj Juj)

where
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jet

|Pa2, X, )2 exp[ —w? €2 [i? (4 6 2)]
1+ @?72[1 — (it/a) cos O]

dx, (29)

In Egs. (28) and (29), x, is the source point, x is the far-field mea-
surementpoint with sphericalcoordinates(R, ®, ¢), w =2x f is the
angular frequency, and p,¢ is the reference pressure for the decibel
scale. D; and u; are the fully expanded jet diameter and velocity.
Here g, ¢,, and 7, are the intensity, spatial size, and decay time
of the fine-scale turbulence. These quantities are related to k (the
turbulence kinetic energy) and ¢ (the dissipation rate) of the k-¢
turbulence model as follows:

2 :cﬂ:c@(k%/s), T, =c.t=c.(k/e) (30)

g2 [ = A¢%, q = 3pk 31)

where p is the mean density of the jet flow at x, and ¢, ¢;, and A
are the three empirical constants of the Tam and Auriault theory.!
They are assigned the values of

¢, = 0.256, c, =0.233, A =0.755 (32)
In addition, u is the mean flow velocity at x,, a., is the ambient
sound speed, and p,(x2, x, w) is the adjoint Green’s function of the
preceding section.

The first step in implementing formulas (28) and (29) is to com-
pute the mean flow using Eq. (1), the parabolized RANS equations.
To startthe calculationat the nozzle exit, it is assumed that the mean
flow is uniform, surrounded by a thin mixing layer with a Gaussian

profile. The half-width of the mixing layeris takentobe 1.5-2.0% of
the equivalentdiameter D4 of the nozzle. The equivalent diameter
is the diameter of a circular nozzle with the same area. Experience
indicates that a small variation of the initial half-width of the mixing
layer has little effect on the radiated noise. It affects only slightly
the high-frequency part of the spectrum.

It is well known that a nonaxisymmetric jet tends to become less
asymmetric in the downstream direction. This is confirmed in the
presentnumerical results. Figure 3 shows the computed contours of
the axial velocity component of a Mach 2 jet at a temperature ratio
1.8 (reservoir to ambient temperature) from a rectangularnozzle of
aspectratio 7.6. The first quadrantis for the flow at x = 1D ., down-
stream. The second, third, and fourth quadrants are for the mean flow
at 5Dy, 10Dy, and 15D,y downstream. The contours clearly show
the tendency to become more and more circular. Figure 4 shows a
similar plot for a cold subsonicjet at Mach 0.8 from an aspectratio 8
rectangularnozzle. Again the velocity contours tend to evolve into
a circular shape. A comparison between Figs. 3 and 4 confirms the
expectation that a subsonic rectangular jet would transition into a
circularjet faster than a supersonicjet. This is not surprisingbecause
the axial scale for a jet is the core length. The potential core of a

2/,

Y/0,

eq

Fig. 3 Contours of the axial velocity component of a Mach 2 jet at
temperature ratio 1.8 from a rectangular nozzle of aspect ratio 7.6;
first, second, third, and fourth quadrantare for cross sections at X/D.q =
1,5,10,and 15.

o]
o 13 T T 1 ] i T
o F + E
o b a1 ]
v L
=]
~F
N
n |
o]
n |
~ F
0 . , . ) ) 1 .
o
2 15 105 o oS 1 5 2 25
e

Fig.4 Contours of the axial velocity component of a Mach 0.82 cold
jet from a rectangular nozzle of aspect ratio 8; first, second, third, and
fourth quadrant are for cross sections at X/Dq =1, 5, 10, and 15.
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supersonic jet is much longer than that of a subsonic jet in terms of
equivalentnozzle diameter.

Only a limited number of sets of nonaxisymmetric jet noise data
are available for comparison with predictions. Here two sets of su-
personic Mach number data, one from an ellipticjet of aspectratio 3
and the other from a rectangular jet of aspect ratio 7.6, measured
by Seiner et al.? at the Jet Noise Laboratory of the NASA Lang-
ley Research Center will be used. The design Mach number of the
nozzles of these jets is 2.0. The data are of high quality, compara-
ble to the axisymetric jet noise data used for comparisonin Refs. 1
and 3. Tam and Zaman® measured subsonic jet noise spectra from
an elliptic nozzle of aspectratio 3 and rectangularnozzles of aspect
ratios 3 and 8 along the major and minor axis directions. Because
of the facility used is only semi-anechoic, the quality of the data is
not as good but still acceptable. The preceding references are the
experimental data available to us for comparisons with theoretical
predictions.

Figures 5a-5c¢ show comparisons between calculated and mea-
sured noise spectra for the aspect ratio 3, Mach 2, elliptic jet at
a temperature ratio 1.0. The polar angle ® (exhaust angle) of the
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Fig.5 Noisespectraofan aspectratio 3 elliptic jet at Mach 2.0,7,/T« =
1.0; data from Seiner et al.,2 —, computed spectra, ® = 90 deg.
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Fig.6 Noisespectra of an aspect ratio 3 elliptic jet at Mach 2.0, 7,/T« =
1.0; data from Seiner et al.,>2 ——, computed spectra, ® = 72 deg.

measurement microphone is at 90 deg. Figure 5a is the spectrum
measured in the major axis plane (¢ =90 deg). Figure 5b is the
noise spectrum radiated in the direction of the minor axis plane
(¢ =0 deg). Figure 5c is the noise spectrum at ¢p = 58 deg.

Figures 6a-6¢ are for the same jet as Fig. 5. Here © is
72 deg. Figure 6a is for radiation in the major axis plane (¢ =
90 deg). Figure 6b is for radiation in the minor axis plane (¢ =
0 deg). Figure 6c¢ is the noise spectrum radiated in the ¢ =58 deg
direction.

Figure 7 givesthe comparisonsbetweenthe calculatednoise spec-
tra and experimental measurements of a Mach 2, aspect ratio 7.6,
rectangular jet at temperature ratio 1.8. The data are for the
® =90 deg plane. In Fig. 7, curve a is the spectrum of the noise
radiated in the major axis plane direction. In Fig. 7, curve b is the
spectrum in the minor axis plane direction.

Figure 8 is for the same jet as Fig. 7. In this case the polar angle
is ® =72 deg. The full curve s the calculated noise spectrumin the
major axis direction, ¢ =90 deg. The dotted curve is the predicted
spectrum in the minor axis direction (¢ =0 deg). It is quite clear
that, at this polar angle, the directivity is asymmetric with more
noise radiated in the minor axis plane. The main reason for the
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® =90 deg: major axis plane (a) and minor axis plane (b).

asymmetry is the mean flow refraction effect. Surrounding the two
ends of the major axis of alarge aspectratio rectangularjet are thick
mixing layers. They cause strong refraction to sound radiation. This
contributes to a reduction of noise radiation in these directions. As
can be seen, the calculatedresults seem to follow the measured data
except at very high frequencies.

Figure 9 shows the noise spectrafor the aspectratio 3 ellipticjet at
temperatureratio 1.0 and Mach number 0.82 measured by Tam and
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Fig.10 Noise spectra of an aspect ratio 3 rectangular jet at Mach 0.82,
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90 deg: major axis plane (a) and minor axis plane (b).
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Fig.11 Noisespectraof an aspect ratio 8.0 rectangular jet at Mach 0.82,
T,/To =1.0;datafrom Tam and Zaman,”> ——, computed spectra, ® =

90 deg: major axis plane (a) and minor axis plane (b).

Zaman.>® Shownin Fig. 9 also are the calculatednoise spectra. Curve
ais the noise spectrumat ® = 90 deg and ¢ =90 deg (the major axis
plane). Curve b is the noise spectrum at ® =90 deg and ¢ =0 deg
(the minor axis plane). Figure 10 shows the measured spectra for
a similar rectangular jet (same aspect ratio, temperature ratio, and
Mach number). The calculated noise spectra are also provided.

Finally, Fig. 11 shows the noise spectraof alarge aspectratiorect-
angular jet (aspect ratio 8) at Mach 0.82 and temperature ratio 1.0.
The smooth curves in Fig. 11 are the calculated noise spectra. Both
the calculated and measured spectra are for noise radiation in the
® =90 deg plane. Curve a is for radiation in the major axis plane
(¢ =90 deg) whereas curve b is for radiation in the minor axis plane
(¢ = 0deg). Overall, there is good agreementbetween the spectrum
calculated by Eqgs. (28) and (29) of the Tam and Auriault theory'
and the measured spectrum in each of the described cases.

It is known that at high frequencies, for example, above 20-
30 kHz, atmospheric correction becomes important and must be
takeninto account. For aMach 2.0 jet froma 2-in. (5.08-cm) equiva-
lent diameter nozzle, this correspondsto a Strouhal number 2.0-3.0.
This shouldbe consideredthe upperlimitin the presentcomparisons
with experiments.

V. Conclusions
In this work, the semi-empirical jet noise theory of Tam and
Auriault! is extended to nonaxisymmetric jets. A set of improved
numerical boundary conditionsfor the parabolizedRANS equations
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is developed. This new set of boundary conditions makes it possible
to compute the jet mean flow and the physical variables of the k-¢
turbulence model using a smaller computation domain. The adjoint
Green’s function needed to account for mean flow refraction ef-
fect is reformulated into the solution of a two-dimensional acoustic
scattering problem. It is demonstrated that the solution can be found
accurately and efficiently by time marching the solution to a peri-
odic state by the DRP scheme. Good agreements are found between
computed noise spectra and experimental measurements. It is be-
lieved that this is the first time noise spectra of nonaxisymmetric
jets are calculated with good accuracy.

As a part of the present investigation, a large number of non-
axisymmetric jet noise spectra in the ® =90 deg plane have been
examined. It appears that the spectra are nearly independent of the
azimuthal angle. In the 90-deg plane, there is no noise source con-
vection effect nor mean flow refraction effect. Thus, it appears that
fine-scale turbulence noise, by itself, is quite isotropic. In other
words, the noise sources behave like monopoles.

For noise radiated in the downstream direction, the nonaxisym-
metric mean flow exerts a stronginfluence on the noise spectrum. For
instance, in the case of a rectangular or elliptic jet with large aspect
ratio, there is a much thicker shear layer on the smaller dimension
sides of the jet. Refraction by the shearlayerreduces the radiationof
high-frequency sound. This immediately leads to a nonaxisymmet-
ric sound field (at a fixed polar angle) with more noise radiated in
the minor axis plane. This is borne out in both the numerical results
and experimental measurements.

Appendix: Perfectly Matched Layer
Absorbing Boundary Condition

Berenger?? invented the PML as absorbing boundary condition
for computationalelectromagnetics.Hu? applied the idea to acous-
tic problems. Tam et al.2* showed that, in the case of Euler equations
with flow normal to the perfectly matched layer, the PML equations
have unstable solutions that can, however, be stabilized by the addi-
tion of appropriate artificial selective damping. In all of the works
mentioned, the waves are nondispersive.Equation (25) of the adjoint
Green’s function, however, supports dispersive waves. The purpose
of this Appendix is to show how a PML absorbing boundary condi-
tion can be formulated that will absorb all outgoingdispersive waves
of Eq. (25). Furthermore, it will be shown that the PML equations
are stable.

Outside the jet, i =0, p = po, Eq. (25) reduces to

v, 9Pa
—a_ =0 Al
o VP %y (AD)
g 9 Pa
- =0 A2
ot Y P 9z (A2)
9Pa . y - 1 (dv, dw,
— +iwcos"®Op, ——| —+—] =0 A3
ot weos P Poo ( ay 0z ) (A3

Let us look for plane wave solutions of Eqs. (A1-A3) in the form

D, i
W, | = | w | expli(ay + Bz — Q1)] (A4)
Pa p

By substitution of Eq. (A4) into Eqs. (A1-A3), it is easy to find

b= —(%)ypooﬁ (AS)

b= —(%)mﬁ (A6)

wcos’ O\ . 1 (). 1 (B).
] — —— — = — = =0 (A7
(1252 i (8)r s (B) =0 o

Equations (A5-A7) are homogeneous equations. For nontrivial so-
lution, the determinant of the coefficient matrix of these equations,

when written in a matrix form, must be equal to zero. This gives the
dispersionrelation that may be simplified to

Q* — wQcos’® —a’ (@* + ) =0 (A8)
For a wave of a given frequency €2, its wave numbers, which are

often referred to as the eigenvaluesof the homogeneous system, are
given by the roots of Eq. (A8). On solving Eq. (A8) for «, one finds

1
gy = i(Qz — wQcos’ ® — a;ﬂz) 2 /aoo (A9)

When Eq. (A8) is differentiated and Eq. (A9) is used, the group
velocity of the acoustic wave in the x direction is found:

1
e i2%(92 — wQcos’© — a2 p?)° A10)
do 2Q — wcos? ®

The =+ sign in Eq. (A10) correspondsto ... Now the group velocity
is a function of frequency or wave number. Hence, the waves are
dispersive.

For © > 0, so that oy are real (propagating waves), 2 must be
larger than  cos” . That is, the denominator of Eq. (A10) is pos-
itive. Thus, o, is the right-propagating wave (positive group ve-
locity), and «_ is the left-propagating wave (negative group ve-
locity). For € <0, it is the other way around. In other words, for
the right-propagatingwave, we have «/Q > 0 and «/ Q < 0 for the
left-propagating wave.

Now letus consider PML 1 of Fig. 2. When standard PML formu-
lation is followed, the governing equations and variables in layer 1
are

ﬁa:vh wa:wb ﬁa:P1+P2 (All)
ov 0 +
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Plane wave solutionsof Eqs. (A12-A15) thatmatch the frequency
and traverse wave numbers of wave solution (A4) of the adjoint
equations at the PML interface have the form

vy U,
wy W, .
=| . |explitky + Bz — Q1)] (A16)
Pi Pi
P> |_132J
By substitution of Eq. (A16) into Eqgs. (A12-A15), it is straightfor-
ward to derive
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Justas in the case of algebraic system (A5-A7), Eqs. (A17-A20)
form an eigenvalue problem with « as the eigenvalue. On compar-
ing the two eigenvalue systems, it is clear that they are identical:
same eigenvalue and eigenfunction. The wave numbers of the two
problems are related by

a/QL=«k/(Q+io)
or
Kk =a+io(e/Q) (A21)

That the eigenfunctionsof the two systems are the same allows the
incident wave to be completely transmitted without reflection at the
PML interface. The transmitted wave has the y dependence of the
form

exp(ixy) = expliaey — o (a/Q2)y] (A22)

Because («/ 2) > 0 for the right-propagatingwave, the transmitted
wave is damped as it propagates through the PML.

Finally, to show that the PML equations are stable, it is easy to
find that the dispersionrelation of Egs. (A11-A15) is

2 202

F= (92 — wQcos @ — =2 ) —a2p  (A23)
(Q+io)? i
It can be shown, following Ref. 24 and using the definition of F
defined by Eq. (A23), that the upper-half € plane is mapped into
the entire complex F plane except for the positivereal axis. Because
a% B* > 0, the right-hand side of Eq. (A23), is real and positive, it
follows that there is no solution of Eq. (A23) with € in the upper-
half Q plane. This ensures that the system of PML equationshas no
unstable solution.
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