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Noise from Fine-Scale Turbulence of Nonaxisymmetric Jets
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The noise from the � ne-scale turbulence of high-speed nonaxisymmetric jets is considered. A prediction method
is developed by extending the work of Tam and Auriault (Tam, C. K. W., and Auriault, L., “Jet Mixing Noise from
Fine-Scale Turbulence,” AIAA Journal, Vol. 37, No. 2, 1999, pp. 145–153). A set of improved numerical boundary
conditions for use in nonaxisymmetricjet mean � ow and turbulence calculation is developed. These new boundary
conditions allow the computation to be carried out in a smaller computation domain. It is known that nonaxisym-
metric mean � ow has a signi� cant impact on the radiated noise spectrum and directivity through refraction. In the
Tam and Auriault theory, this effect is accounted for by means of the adjoint Green’s function. Here the adjoint
Green’s function method is extended to nonaxisymmetric mean � ows. The adjoint Green’s function is � rst recast
into the solution of a sound scattering problem. The sound scattering problem is then solved computationally by
computational aeroacoustics methods. Extensive comparisons between calculated and experimentally measured
jet noise spectra are presented. They include both rectangular and elliptic jets at supersonic and subsonic Mach
numbers. Good agreements are found even for jets with very large aspect ratio.

Nomenclature
cv = speci� c heat at constant volume
D j = jet diameter (fully expanded if jet is supersonic)
f; ! = frequency and angular frequency
k = turbulence kinetic energy
Pr = Prandtl number
p = pressure
.R; 2; Á/ = spherical polar coordinates
.r; Á; x/ = cylindrical coordinates
T = temperature
u j = jet velocity (fully expanded if jet is supersonic)
.u; v; w/ = velocity components
.ua ; va , = adjoint variables
wa; pa/
.u1; ½1; = ambient conditions
p1; T1/
.x; y; z; t/ = Cartesian coordinates and time
.®; ¯; Ä/ = wave number in x and y directions

and angular frequency
° = ratio of speci� c heat
" = dissipation rate of the k–" turbulence model
· = wave number of waves in perfectly matched layer
º = molecular viscosity
ºt = turbulent viscosity
½ = density
¾ = damping constant

I. Introduction

A SEARCH through the literature reveals that there is no reli-
able nonaxisymmetricjet noisepredictiontheoryat the present

time. The objective of this investigationis to extend the recently de-
veloped semi-empirical jet noise theory of Tam and Auriault1 to
nonaxisymmetric jets. In the original work, only axisymmetric jets
were considered.

The Tam and Auriault theory1 calculates only the noise from the
� ne-scale turbulenceof a jet. The theory � rst separates out the � ne-

Received 22 March 2001; revision received 4 September 2001; accepted
for publication 4 September 2001. Copyright c° 2001 by Christopher K. W.
Tam and Nikolai N. Pastouchenko. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission. Copies of this paper
may be made for personal or internal use, on condition that the copier pay
the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923; include the code 0001-1452/02 $10.00 in
correspondence with the CCC.

¤Robert O. Lawton DistinguishedProfessor, Department of Mathematics.
Fellow AIAA.

†Graduate Student, Department of Mathematics.

scale turbulencefrom the � ow and acousticsby spatial � ltering.The
spatially� lteredgoverningequationshave essentiallythe same form
as the Reynolds-averaged Navier–Stokes equations (RANS). Tam
and Auriault suggested1 that the dominant part of � ne-scale turbu-
lence mixing noise is generated by the unsteady turbulence kinetic
energy.Refractionof sound by the � ow and density gradients of the
jet is included in the theory through the use of the adjoint Green’s
function. Information concerning the � ne-scale turbulence is sup-
plied by the semi-empirical k–" turbulence model. Aside from the
inherent empirical constants of the k–" model, the theory contains
three empirical constantsof its own. Two of these constantsare used
to establish the length scales and timescales of the � ne-scale turbu-
lence. The turbulence kinetic energy computed by the k–" model
includesboth the large- and � ne-scale turbulenceof the jet. The third
constant effectivelyassigns the proper fractionof the turbulenceki-
netic energy k to the � ne-scale turbulence.The three constantswere
found by best � t to the jet noise data of the Jet Noise Laboratory of
NASA Langley Research Center.2;3 Tam and Auriault1 applied their
theory to the prediction of cold jet noise spectra over a wide range
of Mach numbers from 0.3 to 2.0. Note that the sound pressure level
(SPL) of a Mach 2.0 jet is about60 dB higher than that of a Mach 0.3
jet. Thus, the experimental data cover a very large range of SPLs.
The predictedspectra agreed well with experimentalmeasurements.
Tam and Auriault also compared the calculated noise spectra with
hot supersonic jet noise data at Mach 1.5 and 2.0. Good agreements
were again found. The temperature ratio of the data varied from 1.0
to 4.9. This temperature range brackets the operating conditions of
all modern day commercial jet engines.

Most recently, Tam et al.4 used the theory to calculate the noise
from jets in simulated forward � ight. Experimentally, it is known
that for each 0.2 increase in forward � ight Mach number, there is
a reduction of sideline noise of 4–4.5 dB. This is a large change in
jet noise level. Tam et al. compared the calculatednoise spectra for
a Mach 1.5 jet at simulated forward � ight Mach number 0.0, 0.2,
and 0.4 with the measurements of Norum and Brown.5 Excellent
agreements were found. They4 also compared the calculated noise
spectra for subsonic jets in forward � ight with the data of Ref. 6.
Again good agreements were found.

To calculate the noise from nonaxisymmetric jets, two crucial
requirements must be met. First, one must compute the mean � ow
and the turbulence quantities needed for the noise source model.
Second, a method to calculate the � ow refraction effects over the
entire frequency spectrum of jet noise has to be developed.

The Tam and Auriault theory1 relies on the k–" turbulencemodel
for input on jet mean � ow, noise source intensity and the character-
istic length scales and timescales of the turbulence. The constants
of the k–" model are, however, not those of the standard model.
Tam and Auriault chose to adopt the values suggestedby Thies and
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Tam.7 Thies and Tam observed that the large turbulence structures
of a � ow, having dimensions comparable to the mean � ow, would
likely be affected by the � ow geometry and boundary conditions.
Their dynamics and characteristics are, therefore, � ow speci� c. In
other words, the large-scale turbulence is not universal. The con-
stantsof the standardmodel were calibratedby data from low-speed
boundary-layerand two-dimensionalmixing layers. Thus, they are
not necessarily suitable for high-speed jets. Indeed, past attempts
to use the standard model to predict jet mean � ow pro� les did not
give satisfactory results. Thies and Tam then suggested that if one
restricted one’s consideration to a speci� c class of � ows with simi-
lar characteristics, such as jet � ow alone, it would be reasonable to
expect a single set of constants to work for all of the � ows within
the class. They recalibrated the constants for jet � ows using a large
database. Here we will use the values of the constants they recom-
mend.

To calculatethemean � ow, Thies andTam7 solvedtheparabolized
RANS equations supplemented by the k–" model. They employed
the highly accurate dispersion-relation-preserving (DRP) scheme8

for numerical solution. In this work, the mean � ows of nonaxisym-
metric jets are calculated essentially by the same procedure except
that an improved set of boundary conditions is imposed. The new
boundary conditions are developed to allow the computation to be
carried out in a smaller computation domain. The formulation of
the new boundary conditions is described in Sec. II.

The nonaxisymmetricmean � ow of a jet, undoubtedly,has a sig-
ni� cant impact on the noise directivity through refraction alone.
Because low-frequency sound having long acoustic wavelength is
less affected by refraction than high-frequency sound, the nonax-
isymmetric mean � ow will modify the noise spectrum in the far
� eld. In the past, there have been many investigationson how best
to quantify mean � ow effects. Most of the approachesused asymp-
totic analysis based either on the low-frequency limit, for example,
Goldstein,9;10 or the high-frequencylimit, for example, Balsa11 and
Goldstein.12 Durbin13;14 and Khavaran and Krejsa15;16 considered
the zero wavelength limit of geometric acoustics and ray tracing.
However, jet noise is broadband, extending over a frequency range
of almost threedecades.It is dif� cult to justify the use of asymptotic
results over such a broad frequency range. Typically, the Strouhal
number, fD j =u j , at the peak of the noise spectrumis approximately
equal to 0.3. For commercial jet engines, u j is roughly equal to the
speed of sound. Thus, the acoustic wavelength is as long as three jet
diameters. This is de� nitely not in the high-frequencylimit. More-
over, Khavaran17 stated that the use of ray tracing was too compu-
tationally intensive to be practical.

In this paper, the � ow effect is included in the theory through
an extension of the adjoint Green’s function approach of Tam and
Auriault.18 In Sec. III, it will be shown how the adjointGreen’s func-
tion problem can be recast into a two-dimensional sound scattering
problem. The sound scatteringproblem is then solved computation-
ally in the time domain by the DRP scheme.8 A perfectly matched
layer (PML) boundary condition is enforced around the � nite com-
putation domain. The PML absorbs the scattered sound waves, thus
preventingtheir re� ectionback into the computationdomain. In this
way, possible contamination of the numerical solution is avoided.

In Sec. IV, comparisons between computed noise spectra and
experimentalmeasurementsare presented.Both rectangularand el-
liptic jets at supersonic and subsonic Mach numbers are included
in the comparisons. Good agreements are found in all of the cases.
The nonaxisymmetric features of the far-� eld noise spectra from
large aspect ratio rectangular jets are correctly reproduced by the
theory.

II. Mean Flow and Turbulence Computation
In this investigation,the mean � ow and turbulencekinetic energy

of nonaxisymmetric jets are calculated by the procedure used by
Thies and Tam.7 Thies and Tam employedthe k–" turbulencemodel
but with a set of modi� ed constants. They solved the parabolized
RANS equations by means of the DRP scheme.8 The solution starts
at the nozzle exit plane and marches downstream. It is well known
that the parabolized RANS equations are numerically unstable in
regions without a mean � ow. To stabilize the numerical solution,

a small forward � ight velocity, 2% or less of the jet exit velocity,
is added outside the static jet. The computation is carried out in a
� nite domain in the y¡z plane at each x station, where x is taken
to be the � ow direction. Because a � nite domain is used, a set of
boundary conditions must be imposed at the external boundaries.
In the present investigation, a new set of boundary conditions are
used. This set of boundary conditions is derived without invoking
the far-� eld assumption r ! 1. This allows the computation to be
done in a smaller computation domain. The numerical results are
found to be in good agreement with those obtained by the original
code of Thies and Tam.7 However, the computation time is reduced.
In this section, the formulation of the new boundary conditions is
presented.

The parabolized RANS equations including the Pope and Sarkar
corrections (see Ref. 7) with respect to a Cartesian coordinate cen-
tered at the nozzle exit with the x axis pointing in the � ow direction
are
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The constants are

c¹ D 0:0874; ¾k D 0:324; ¾" D 0:377; Pr D 0:422

c"1 D 1:4; c"2 D 2:02; c"3 D 0:822

k0 D 10¡6; "0 D 10¡4; ®1 D 0:518

(The two small positive numbers k0 and "0 are inserted in the k–"
model to prevent division by zero.)

Outside the jet, the � ow velocity and pressure and temperature
perturbationsaresmall. It is, therefore,suf� cientto usethe linearized
form of Eq. (1). Also, note that in this region there is no turbulence
or k D " D 0. Let

u D u1 C u 0; v D v 0; w D w0

p D p1 C p0; T D T1 C T 0 (2)

Substitution of Eq. (2) into Eq. (1) and retaining only the lowest-
order terms, the linearized equations are
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The integral of Eq. (3) is

u 0 D 0 (8)

Equations (6) and (7) may be integrated, by making use of Eq. (8),
to yield the integral

T 0 D [.° ¡ 1/=° ].T1=p1/p0 (9)

Because of Eq. (9), the remaining unknown variables v 0, w0, and p0

are governed by Eqs. (4) and (5) and the following equation:
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At some distance away from the jet, the velocity and pressure
� elds are expected to be small and approximately axisymmetric.
In this region, Eqs. (4), (5), and (10), when written in cylindrical
coordinates .r; Á; x/, have the form
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where v 0
r is the radial velocity. If r is large, the last term of Eq. (12)

may be neglected.In this case,Eqs. (11) and (12) become the simple
wave equation, and the solution is a function of » D x ¡ .u1=a1/r ,

where a1 D .° p1=½1/1=2 is the sound speed. For r not too far from
the jet, the last term of Eq. (12) should be retained. Let us change
the independent variables of Eqs. (11) and (12) to » and r . The
equations become
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Because u1 is small, the solution may be expanded as a series in
u1, that is,

v0
r D v0 C u1v1 C u2

1v2 C ¢ ¢ ¢

p0 D p0 C u1 p1 C u2
1 p2 C ¢ ¢ ¢ (15)

It is easy to � nd, by substitutingEq. (15) into Eqs. (13) and (14) and
after some simple integrations, the following formulas for the � rst
two terms of Eq. (15):
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where Ov0.» / is an arbitrary function. By the differentiation of
Eqs. (15) and (16) to eliminate Ov0.» /, it is straightforward to de-
rive the boundary conditions
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In summary, the boundaryconditionsfor all of the � ow variables,
to be imposed in the jet near � eld, are
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III. Mean Flow Refraction Effects
To account for mean � ow refraction effect on the radiated sound,

Tam and Auriault1 made use of the adjoint Green’s function. The
computation of the adjoint Green’s function for axisymmetric jets
was discussed in detail by Tam and Auriault.18 Here the method is
generalized for application to nonaxisymmetric jets.

Jets evolve slowly in the � ow direction. A natural approximation
is to regard the mean � ow as locally parallel. Tam and Auriault18

investigated the accuracy of the locally parallel � ow approxima-
tion and concludedthat the approximationwould yield good results
outside the cone of silence. Because � ne-scale turbulence noise is
dominant in the sideline and upstream directions that are not in the
cone of silence, the locally parallel � ow approximationwill be used
throughout this work.

A. Adjoint Green’s Function as Solution of Scattering Problem
Let Nu.y; z/, N½.y; z/, and Np.y; z/ be the mean � ow velocity,

density, and pressure distribution of a jet. Let us consider the
time harmonic adjoint Green’s function, denoted by a subscript a.
The governing equations for the adjoint Green’s function are (see
Ref. 18)
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where x0 is the far-� eld observationpoint at which jet noise is to be
measured.

Outside the jet, Nu is zero. It is straightforwardto � nd fromEq. (20)
that pa satis� es the equation
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The solution of Eq. (21) is
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(22)

where jx ¡ x0j is the distance between x and x0.
For convenience, let the spherical coordinatesof x0 be .R; 2; Á/

(Fig. 1). The polar axis of the spherical coordinatesystem coincides
with the x axis. 2 is the polar angle and Á is the azimuthal angle.
Here our interest is con� ned to the far � eld, namely, R ! 1. For
large R, we have

jx ¡ x0j ’ R ¡ x ¢ x0=R

D R ¡ cos 2x ¡ sin 2 cosÁy ¡ sin 2 sin Áz

By means of the precedingfar-� eld approximation,it is easy to � nd,
from Eq. (22) and the correspondingformulas for the velocity com-
ponents, the solution for the adjoint Green’s function, as R ! 1,
to be
2
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Now the adjoint Green’s function of Eq. (20) may be found as a
wave scattering problem by solving the homogeneous equation of
Eq. (20) with Eq. (23) as the incidentwave. This task is greatly sim-
pli� ed by noting that under the locally parallel � ow approximation

Fig. 1 Relationship between spherical coordinates (R; µ; Á) and the
Cartesian coordinates.

the coef� cients of Eq. (20) are independentof x . Thus, the solution
must have the same x dependence as the incident wave. That is,

ua.x; y; z; !/ exp.¡i!t/ D Qua.y; z; t/ exp[¡i.!=a1/ cos 2x]

(24)

and similarly for the other variables.
When exp[¡i.!=a1/ cos2x] is factoredout and ¡i! is replaced

by @=@t in Eq. (20) to make the equations time dependent, the ad-
joint Green’s function problem becomes a two-dimensional sound
scatteringproblem.The governingequationsand the incidentwaves
are as follows:
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Outside the jet, the incident wave is
2
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In deriving Eq. (25), the relationship

ua D ° Np cos 2

a1 ¡ Nu cos 2
pa (27)

which is the integral of the � rst equation of Eq. (20), has been used.

B. Numerical Solution
For a given mean � ow Nu.y; z/, N½.y; z/, and Np.y; z/, the sound

scattering problem of Eqs. (25) and (26) may be solved computa-
tionally. For this purpose, Eq. (25) is discretized according to the
seven-point stencil DRP scheme8;19 in a rectangular computation
domain as shown in Fig. 2. The outer boundary of the computation
domainis takento bewhere themean � ow Nu differsfromu1 by 0.1%
of u j . This choice assures that a larger computationdomain is used
for x stations farther downstream from the nozzle exit. The mesh
size is set by the smaller of the following two criteria. To ensure the
DRP scheme has suf� cient spatial resolution for the incident and

Fig. 2 Computational domain showing the jet � ow, incident sound
waves, and the PML.
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the scattered acoustic waves, no less than seven mesh spacings per
acoustic wavelength is used. That is, a � ner mesh is automatically
used for high-frequencywaves. To make certain that the refraction
of sound by the mixing layer of the jet is accurately computed, a
minimum of eight mesh spacings is used per half-widthof the layer.
To eliminate spurious numerical waves that may inadvertently be
generated at the boundaries of the computation domain, arti� cial
selective damping terms19;20 are added to the discretizedequations.
The arti� cial selective damping terms damp the short waves with-
out affecting the physical (long) waves. The inversemesh Reynolds
number of the damping terms is given a value of 0.05. This value
has been found to yield very satisfactory results.

As shown in Fig. 2, the computation domain is surrounded by a
PML. The PML has a thickness of 15 mesh points. In this layer, the
� ow variables are split into two parts (the split variable method).21

One part of the variables will be assigned the values of the inci-
dent wave given by Eq. (26). The other part is the scattered waves.
The scattered waves are damped by the built-in damping of the
PML.22¡24 The layer is called perfectly matched because, in prin-
ciple, there is no re� ected wave back into the computationdomain.
The constructionof the PML is discussed in the Appendix.

For a given direction of radiation and frequency, the incident
wave (26) is completely speci� ed. To start the computation, initial
conditions are required. In this work, the incident wave is used
as the starting condition. The solution is marched in time until a
time periodic state is attained. At this time, the maximum absolute
value of Qpa over a cycle is measured at every point in the jet. This
is the absolute value of the adjoint Green’s function jpa j needed for
noise computation.

IV. Comparisons with Experimental Measurements
Tam and Auriault1 derived the following formula for the far-

� eld noise spectrum, S.R; 2; Á; f D j =u j /, in decibels per Strouhal
number f D j =u j :
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In Eqs. (28) and (29), x2 is the source point, x is the far-� eld mea-
surementpointwith sphericalcoordinates.R; 2; Á/, ! D 2¼ f is the
angular frequency, and pref is the reference pressure for the decibel
scale. D j and u j are the fully expanded jet diameter and velocity.
Here Oqs , `s , and ¿s are the intensity, spatial size, and decay time
of the � ne-scale turbulence. These quantities are related to k (the
turbulence kinetic energy) and " (the dissipation rate) of the k–"
turbulence model as follows:
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¡
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3
2

¯
"
¢
; ¿s D c¿ ¿ D c¿ .k="/ (30)
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¯
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where N½ is the mean density of the jet � ow at x2 and c`, c¿ , and A
are the three empirical constants of the Tam and Auriault theory.1

They are assigned the values of

c` D 0:256; c¿ D 0:233; A D 0:755 (32)

In addition, Nu is the mean � ow velocity at x2 , a1 is the ambient
sound speed, and pa.x2; x; !/ is the adjoint Green’s function of the
preceding section.

The � rst step in implementing formulas (28) and (29) is to com-
pute the mean � ow using Eq. (1), the parabolizedRANS equations.
To start the calculationat the nozzleexit, it is assumed that the mean
� ow is uniform, surroundedby a thin mixing layer with a Gaussian

pro� le.The half-widthof themixing layer is taken to be 1.5–2.0%of
the equivalent diameter Deq of the nozzle. The equivalent diameter
is the diameter of a circular nozzle with the same area. Experience
indicates that a small variationof the initial half-widthof the mixing
layer has little effect on the radiated noise. It affects only slightly
the high-frequencypart of the spectrum.

It is well known that a nonaxisymmetric jet tends to become less
asymmetric in the downstream direction. This is con� rmed in the
present numerical results. Figure 3 shows the computed contoursof
the axial velocity component of a Mach 2 jet at a temperature ratio
1:8 (reservoir to ambient temperature) from a rectangularnozzle of
aspect ratio 7.6. The � rst quadrant is for the � ow at x D 1Deq down-
stream.The second,third, and fourthquadrantsare for themean � ow
at 5Deq, 10Deq, and 15Deq downstream. The contours clearly show
the tendency to become more and more circular. Figure 4 shows a
similar plot for a cold subsonicjet at Mach 0.8 froman aspect ratio 8
rectangular nozzle. Again the velocity contours tend to evolve into
a circular shape. A comparison between Figs. 3 and 4 con� rms the
expectation that a subsonic rectangular jet would transition into a
circularjet faster than a supersonicjet. This is not surprisingbecause
the axial scale for a jet is the core length. The potential core of a

Fig. 3 Contours of the axial velocity component of a Mach 2 jet at
temperature ratio 1.8 from a rectangular nozzle of aspect ratio 7.6;
� rst, second, third, and fourth quadrantare for cross sections at X/Deq =
1, 5, 10, and 15.

Fig. 4 Contours of the axial velocity component of a Mach 0.82 cold
jet from a rectangular nozzle of aspect ratio 8; � rst, second, third, and
fourth quadrant are for cross sections at X/Deq = 1, 5, 10, and 15.
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supersonic jet is much longer than that of a subsonic jet in terms of
equivalent nozzle diameter.

Only a limited number of sets of nonaxisymmetric jet noise data
are available for comparison with predictions. Here two sets of su-
personicMach numberdata, one from an elliptic jet of aspect ratio 3
and the other from a rectangular jet of aspect ratio 7.6, measured
by Seiner et al.2 at the Jet Noise Laboratory of the NASA Lang-
ley Research Center will be used. The design Mach number of the
nozzles of these jets is 2.0. The data are of high quality, compara-
ble to the axisymetric jet noise data used for comparison in Refs. 1
and 3. Tam and Zaman25 measured subsonic jet noise spectra from
an elliptic nozzle of aspect ratio 3 and rectangularnozzles of aspect
ratios 3 and 8 along the major and minor axis directions. Because
of the facility used is only semi-anechoic, the quality of the data is
not as good but still acceptable. The preceding references are the
experimental data available to us for comparisons with theoretical
predictions.

Figures 5a–5c show comparisons between calculated and mea-
sured noise spectra for the aspect ratio 3, Mach 2, elliptic jet at
a temperature ratio 1.0. The polar angle 2 (exhaust angle) of the

a) Major axis plane (Á = 90 deg)

b) Minor axis plane (Á = 0 deg)

c) Á = 58 deg plane

Fig.5 Noise spectra of an aspect ratio 3 elliptic jet at Mach 2.0,Tr/T 1 =
1.0; data from Seiner et al.,2 ——, computed spectra, H = 90 deg.

a) Major axis plane (Á = 90 deg)

b) Minor axis plane (Á = 0 deg)

c) Á = 58 deg plane

Fig.6 Noise spectra of anaspect ratio 3 elliptic jet at Mach 2.0,Tr/T 1 =
1.0; data from Seiner et al.,2 ——, computed spectra, H = 72 deg.

measurement microphone is at 90 deg. Figure 5a is the spectrum
measured in the major axis plane (Á D 90 deg). Figure 5b is the
noise spectrum radiated in the direction of the minor axis plane
(Á D 0 deg). Figure 5c is the noise spectrum at Á D 58 deg.

Figures 6a–6c are for the same jet as Fig. 5. Here 2 is
72 deg. Figure 6a is for radiation in the major axis plane (Á D
90 deg). Figure 6b is for radiation in the minor axis plane (Á D
0 deg). Figure 6c is the noise spectrum radiated in the Á D 58 deg
direction.

Figure 7 gives the comparisonsbetweenthecalculatednoise spec-
tra and experimental measurements of a Mach 2, aspect ratio 7.6,
rectangular jet at temperature ratio 1.8. The data are for the
2 D 90 deg plane. In Fig. 7, curve a is the spectrum of the noise
radiated in the major axis plane direction. In Fig. 7, curve b is the
spectrum in the minor axis plane direction.

Figure 8 is for the same jet as Fig. 7. In this case the polar angle
is 2 D 72 deg. The full curve is the calculatednoise spectrum in the
major axis direction, Á D 90 deg. The dotted curve is the predicted
spectrum in the minor axis direction (Á D 0 deg). It is quite clear
that, at this polar angle, the directivity is asymmetric with more
noise radiated in the minor axis plane. The main reason for the
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Fig. 7 Noise spectra of an aspect ratio 7.6 rectangular jet at Mach 2.0,
Tr/T1 = 1.8; data from Seiner et al.,2 ——, computed spectra; H =
90 deg: major axis plane (a) and minor axis plane (b).

Fig. 8 Noise spectra of an aspect ratio 7.6 rectangular jet at Mach 2.0,
Tr/T1 = 1.8; data from Seiner et al.,2 H = 72 deg: computed spectra
——, major axis plane and - - - -, minor axis plane.

Fig. 9 Noise spectra of an aspect ratio 3 elliptic jet at Mach 0.82,
Tr/T1 = 1.0; data from Tam and Zaman,25 ——, computed spectra,
H = 90 deg: major axis plane (a) and minor axis plane (b).

asymmetry is the mean � ow refraction effect. Surrounding the two
ends of the major axis of a large aspect ratio rectangularjet are thick
mixing layers. They cause strong refraction to sound radiation.This
contributes to a reduction of noise radiation in these directions. As
can be seen, the calculatedresults seem to follow the measured data
except at very high frequencies.

Figure9 shows the noisespectra for the aspect ratio 3 elliptic jet at
temperature ratio 1.0 and Mach number 0.82 measured by Tam and

Fig. 10 Noise spectra of an aspect ratio 3 rectangular jet at Mach 0.82,
Tr/T 1 = 1.0; data from Tam and Zaman,25 ——, computed spectra, H =
90 deg: major axis plane (a) and minor axis plane (b).

Fig.11 Noise spectra of an aspect ratio 8.0rectangularjet atMach0.82,
Tr/T 1 = 1.0; data from Tam and Zaman,25 ——, computed spectra, H =
90 deg: major axis plane (a) and minor axis plane (b).

Zaman.25 Shown in Fig. 9 alsoare thecalculatednoisespectra.Curve
a is the noise spectrumat 2 D 90 deg and Á D 90 deg (the major axis
plane). Curve b is the noise spectrum at 2 D 90 deg and Á D 0 deg
(the minor axis plane). Figure 10 shows the measured spectra for
a similar rectangular jet (same aspect ratio, temperature ratio, and
Mach number). The calculated noise spectra are also provided.

Finally,Fig. 11 shows the noise spectraof a large aspectratio rect-
angular jet (aspect ratio 8) at Mach 0.82 and temperature ratio 1.0.
The smooth curves in Fig. 11 are the calculatednoise spectra. Both
the calculated and measured spectra are for noise radiation in the
2 D 90 deg plane. Curve a is for radiation in the major axis plane
(Á D 90 deg) whereas curve b is for radiation in the minor axis plane
(Á D 0 deg). Overall, there is good agreementbetween the spectrum
calculated by Eqs. (28) and (29) of the Tam and Auriault theory1

and the measured spectrum in each of the described cases.
It is known that at high frequencies, for example, above 20–

30 kHz, atmospheric correction becomes important and must be
taken into account.For a Mach 2.0 jet froma 2-in. (5.08-cm) equiva-
lent diameternozzle, this correspondsto a Strouhalnumber2.0–3.0.
This shouldbe consideredtheupperlimit in the presentcomparisons
with experiments.

V. Conclusions
In this work, the semi-empirical jet noise theory of Tam and

Auriault1 is extended to nonaxisymmetric jets. A set of improved
numericalboundaryconditionsfor the parabolizedRANS equations
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is developed.This new set of boundaryconditionsmakes it possible
to compute the jet mean � ow and the physical variables of the k–"
turbulencemodel using a smaller computationdomain. The adjoint
Green’s function needed to account for mean � ow refraction ef-
fect is reformulated into the solution of a two-dimensionalacoustic
scatteringproblem. It is demonstratedthat the solutioncan be found
accurately and ef� ciently by time marching the solution to a peri-
odic state by the DRP scheme. Good agreementsare found between
computed noise spectra and experimental measurements. It is be-
lieved that this is the � rst time noise spectra of nonaxisymmetric
jets are calculated with good accuracy.

As a part of the present investigation, a large number of non-
axisymmetric jet noise spectra in the 2 D 90 deg plane have been
examined. It appears that the spectra are nearly independent of the
azimuthal angle. In the 90-deg plane, there is no noise source con-
vection effect nor mean � ow refraction effect. Thus, it appears that
� ne-scale turbulence noise, by itself, is quite isotropic. In other
words, the noise sources behave like monopoles.

For noise radiated in the downstream direction, the nonaxisym-
metricmean � owexertsa strongin� uenceon thenoisespectrum.For
instance, in the case of a rectangularor elliptic jet with large aspect
ratio, there is a much thicker shear layer on the smaller dimension
sides of the jet. Refractionby the shear layer reduces the radiationof
high-frequencysound. This immediately leads to a nonaxisymmet-
ric sound � eld (at a � xed polar angle) with more noise radiated in
the minor axis plane. This is borne out in both the numerical results
and experimentalmeasurements.

Appendix: Perfectly Matched Layer
Absorbing Boundary Condition

Berenger22 invented the PML as absorbing boundary condition
for computationalelectromagnetics.Hu23 applied the idea to acous-
tic problems.Tam et al.24 showed that, in the case of Euler equations
with � ow normal to the perfectlymatched layer, the PML equations
have unstable solutions that can, however, be stabilizedby the addi-
tion of appropriate arti� cial selective damping. In all of the works
mentioned,the wavesare nondispersive.Equation (25)of the adjoint
Green’s function, however, supports dispersivewaves. The purpose
of this Appendix is to show how a PML absorbingboundary condi-
tion can be formulatedthatwill absorball outgoingdispersivewaves
of Eq. (25). Furthermore, it will be shown that the PML equations
are stable.

Outside the jet, Nu D 0, N½ D ½1 , Eq. (25) reduces to
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Let us look for plane wave solutions of Eqs. (A1–A3) in the form
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By substitution of Eq. (A4) into Eqs. (A1–A3), it is easy to � nd
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Equations (A5–A7) are homogeneous equations. For nontrivial so-
lution, the determinant of the coef� cient matrix of these equations,

when written in a matrix form, must be equal to zero. This gives the
dispersion relation that may be simpli� ed to

Ä2 ¡ !Ä cos2 2 ¡ a2
1.®2 C ¯2/ D 0 (A8)

For a wave of a given frequency Ä, its wave numbers, which are
often referred to as the eigenvaluesof the homogeneoussystem, are
given by the roots of Eq. (A8). On solving Eq. (A8) for ®, one � nds

®§ D §
¡
Ä2 ¡ !Ä cos2 2 ¡ a2

1¯2
¢ 1

2

.
a1 (A9)

When Eq. (A8) is differentiated and Eq. (A9) is used, the group
velocity of the acoustic wave in the x direction is found:

@Ä

@®
D §

2a1
¡
Ä2 ¡ !Ä cos2 2 ¡ a2

1¯2
¢ 1

2

2Ä ¡ ! cos2 2
(A10)

The § sign in Eq. (A10) correspondsto ®§. Now the group velocity
is a function of frequency or wave number. Hence, the waves are
dispersive.

For Ä > 0, so that ®§ are real (propagating waves), Ä must be
larger than ! cos2 2. That is, the denominator of Eq. (A10) is pos-
itive. Thus, ®C is the right-propagating wave (positive group ve-
locity), and ®¡ is the left-propagating wave (negative group ve-
locity). For Ä < 0, it is the other way around. In other words, for
the right-propagatingwave, we have ®=Ä > 0 and ®=Ä < 0 for the
left-propagatingwave.

Now let us considerPML 1 of Fig. 2. When standardPML formu-
lation is followed, the governing equations and variables in layer 1
are

Qva D v1; Qwa D w2; Qpa D p1 C p2 (A11)
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Planewave solutionsofEqs. (A12–A15) thatmatch the frequency
and traverse wave numbers of wave solution (A4) of the adjoint
equations at the PML interface have the form

2

664

v1

w2

p1

p2

3

775 D

2

664

Ov1

Ow2

Op1

Op2

3

775 exp[i.·y C ¯z ¡ Ät/] (A16)

By substitution of Eq. (A16) into Eqs. (A12–A15), it is straightfor-
ward to derive
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Just as in the case of algebraic system (A5–A7), Eqs. (A17–A20)
form an eigenvalue problem with · as the eigenvalue. On compar-
ing the two eigenvalue systems, it is clear that they are identical:
same eigenvalue and eigenfunction.The wave numbers of the two
problems are related by

®=Ä D ·=.Ä C i¾ /

or

· D ® C i¾.®=Ä/ (A21)

That the eigenfunctionsof the two systems are the same allows the
incident wave to be completely transmitted without re� ection at the
PML interface. The transmitted wave has the y dependence of the
form

exp.i·y/ D exp[i®y ¡ ¾ .®=Ä/y] (A22)

Because .®=Ä/ > 0 for the right-propagatingwave, the transmitted
wave is damped as it propagates through the PML.

Finally, to show that the PML equations are stable, it is easy to
� nd that the dispersion relation of Eqs. (A11–A15) is

F ´
³

Ä2 ¡ !Ä cos2 2 ¡
a2

1· 2Ä2

.Ä C i¾ /2

´
D a2

1¯2 (A23)

It can be shown, following Ref. 24 and using the de� nition of F
de� ned by Eq. (A23), that the upper-half Ä plane is mapped into
the entire complex F plane except for the positivereal axis.Because
a2

1¯2 > 0, the right-hand side of Eq. (A23), is real and positive, it
follows that there is no solution of Eq. (A23) with Ä in the upper-
half Ä plane. This ensures that the system of PML equationshas no
unstable solution.
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